LEDs in Textilien

Biegsame, tragbare Superkondensatoren aus einem porösem Kohlenstoff-Nanoverbundstoff.

Abendkleider mit eingewebten LEDs sehen extravagant aus, aber sind vom Strom abhängig. Für solche tragbaren Stromquellen haben chinesische Wissenschaftler ein zu Stoff verpressbares Elektrodenmaterial entwickelt, das leicht, stabil und leistungsfähig ist. Mikrofluidik, also winzige Flüssigkeitsströme, war als Herstellungstechnik sehr hilfreich, heißt es in ihrem Artikel in der Zeitschrift Angewandte Chemie.Außer Lampen in Kleidern können tragbare Elektronik aber auch einfach Sensoren sein, die in Funktionsgewebe zum Beispiel die Feuchtigkeit oder die Temperatur zu überwachen. Energiespeicher zur Stromversorgung von in Textilien integrierter Endelektronik sollten biegsam und zuverlässig sein. Biegsame Elektroden versagen jedoch oft im Langzeitbetrieb und haben oft weniger Kapazität als andere moderne elektrische Speicher. Die Materialwissenschaftler von der Nanjing Tech University in China haben aus zwei Kohlenstoff-Nanomaterialien und einem metallorganischen Gerüst ein hybrides feinporöses Elektrodenmaterial entwickelt und daraus textilgeeignete Superkondensatoren gefertigt.In den winzigen Kanälen auf einem Mikrofluidik-Chip wurden die Chemikalien mit einem Ölstrom in Tröpfchen zerlegt. In diesen Tröpfchen reagierten die Substanzen miteinander zu einem nahezu fehlerfreien Materialgerüst aus Poren, aktiven Gruppen und leitfähigen Schichten. Auf einem neuartigen Gebläse-Elektro-Nassspinner wurden die mikro-mesoporösen Kohlenstoffgerüste dann zusammen mit einem thermoplastischen Harz zu Fasern versponnen und diese dann weiter zu einem Gewebe für Elektroden verpresst. Die tuchartigen Elektroden setzten die Wissenschaftler dann zu Superkondensatoren zusammen. Für wirklich gute Elektroden sei aber noch eine weitere Beschichtungsrunde mit den mikro-mesoporösen Kohlenstoffgerüsten nötig gewesen, merkten sie an.Die Superkondensatoren mit den Gewebe-Elektroden waren nicht nur biegsam, sondern in ihrer Energiedichte, ihrer spezifischen Kapazität und der Laufzeit von 10.000 Lade-Entlade-Zyklen vergleichbaren Netzteilen anderer Zusammensetzung deutlich überlegen. Praktische Tests wurden auch durchgeführt. Die Superkondensator-Tücher brachten bunte LEDs in Kleidern zum Leuchten und versorgten – solarbetrieben – elektronische Endgeräte in Funktionstextilien mit Strom.Originalveröffentlichung:

Su Chen et al.; „Hierarchical Micro‐Mesoporous Carbon‐Framework‐Based Hybrid Nanofibres for High‐Density Capacitive Energy Storage“; Angewandte Chemie International Edition; 2019

Bild: © Wiley-VCH

AK
14.11.19